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Abstract— Many biomolecular systems can be described by
chemical reaction networks. Determining which chemical reac-
tion network models are inconsistent with observed data can
be done via model invalidation. In this work, we formulate and
solve a robust version of the model invalidation problem for the
case where only measurements from the stationary distribution
are available. This problem corresponds to determining if an
observed distribution could have been generated by the given
chemical reaction network for some value of the parameters,
plus a perturbation of bounded size with respect to total
variation distance. The main technical tool we introduce to
solve the problem is a set of generalized moments that make
the problem amenable to an algorithmic solution.

I. INTRODUCTION

Many systems of interest in synthetic and systems biology
can be modeled by stochastic chemical reaction networks.
These models describe the evolution of the molecular counts
of each species as a Markov chain over the non-negative
lattice [3]. For many design problems in synthetic biology,
one must select molecules that implement a specific set of
chemical reactions from a selection of possible candidate
molecules. Therefore, determining from experimental data
whether a particular set of candidate molecules implements
the desired model is highly relevant for design. One frame-
work for deciding if a model is “correct” is model inval-
idation. In this framework, the experimental data is either
consistent or inconsistent with a given model. If the data is
inconsistent with the model, then the model is invalidated
since we know that the model is incorrect in the sense that
it could not have generated the data. On the other hand, if
the data is consistent with the model, the model may or may
not have generated the data [4], [21].

Approaches to check if data invalidates the model have
been developed for ordinary differential equation models of
biological systems [20], [12], [22], [7], which are applicable
when one wishes to model how the mean of a population of
cells evolves over time. However, in many cases of interest,
experiments are performed where a large population of cells
is cultured, and at certain times the distribution of the species
across the population is measured using techniques such
as flow cytometry [2] or single cell RNA sequencing [11].
Such distributional data has been used for identifying the
parameters of chemical reaction networks [17], [14], [16].
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However, the problem of model invalidation from distri-
butional data is largely unexplored. A special case of dis-
tributional data is when only samples from the stationary
distribution are measured, which is the case we focus on
in this work. To allow for the possibility that the observed
empirical distribution is perturbed in some way from the
stationary distribution of the idealized chemical reaction
network model, e.g. by outliers or finite sample effects, we
study a robust model invalidation problem, that requires the
observed distribution to be sufficiently far in total variation
distance from all stationary distributions achievable by the
model before we invalidate the model. In this setting, the
model invalidation problem can be naturally formulated as a
nonconvex quadratic program, where the nonconvexity arises
through the bilinear interactions between the (unknown)
parameters and the probability mass function through the
chemical master equation. Such a quadratic program cannot
be solved in practice, since the number of decision variables
is equal to the number of relevant microstates, which even
for small systems may be extremely large, or even infinite.
Our approach summarizes the stationary distribution using
finitely many “exponentially weighted moments,” which we
introduce. In this way we obtain a much smaller, though
still nonconvex, quadratic program that can be solved for
biologically relevant systems using commercial software
such as Gurobi [1].

Our approach uses methods that are similar to the semidef-
inite and linear programming approaches to bounding the
moments of the stationary distribution [9], [6]. Such methods
are based on the fact that the lower order moments must
satisfy certain constraints, which come from the CME [8],
and the fact that one can describe the set of moments
achieved by any probability distribution using semidefinite
programming [13]. However, when the maximum molecular
counts of the species are unbounded, the total variation
distance between two distributions cannot be bounded from
below by comparing finitely many moments of the two dis-
tributions. This is due to the fact that small perturbations in
total variation can cause unbounded changes in the moments,
and results in an inability to robustly invalidate a model using
finitely many moments. To resolve this issue, we introduce a
novel family of generalized moments which are better suited
to the model invalidation problem for chemical reaction
networks in the sense that the total variation distance between
two distributions can be underapproximated by comparing
finitely many of our generalized moments.

The remainder of the paper is organized as follows. In
Section II, we provide mathematical background and intro-



duce our definition of robust model invalidation. In Section
III, we introduce these generalized moments and show how
to construct sets where the first k generalized moments of
the stationary distribution must lie. Then, in Section IV we
exploit this construction to give a solution to the robust model
invalidation problem. We illustrate our method by applying
it to an example chemical reaction network in Section V, and
provide concluding remarks and directions for future work
in Section VI.

II. PROBLEM SETTING
A. The Chemical Master Equation

We consider a chemical reaction network (CRN) con-
sisting of n species X = [X1, . . . ,Xn]T interacting via

r reactions 〈ξir,X〉
θi 〈ξip,X〉 in a container with unit

volume. When reaction i fires, the species counts X changes
by ξi = ξip−ξir. Each reaction occurs at rate qi(X), which is
proportional to θi ≥ 0, the reaction rate constant of reaction
i. Specifically, we consider CRNs with only zeroth, first, and
second order reactions. A zeroth order reaction is of the form
∅

θi 〈ξip,X〉, and has propensity qi(X) = θi. A first

order reaction is of the form Xs
θi 〈ξip,X〉 for some s,

and has propensity qi(X) = θiXs. A second order reaction

is of the form Xs + Xs′
θi 〈ξip,X〉 for some s, s′, and

has propensity qi(X) = θiXsXs′ if s 6= s′, and propensity
qi(X) = 1

2θiXs(Xs − 1) if s = s′. Since we assume that
there are no third order or higher order reactions, for all i,
qi(X) is a polynomial of degree less that or equal to two.

The Chemical Master Equation (CME) describes the time
evolution of the probability mass function of the species
counts:

d

dt
P [X(t) = x] =

r∑
i=1

qi(x− ξi)P
[
X(t) = x− ξi

]
−

r∑
i=1

qi(x)P [X(t) = x] .

In this work we assume that X(t) is ergodic, and as such
the CME has a unique steady state solution, which is the
stationary distribution of X(t).

For any function h : Zn≥0 → R we have the corresponding
generalized moment E [h(X)], when the expectation exists.
We have that the derivative of E [h(X)] is given by

d

dt
E [h(X)] = E

[
r∑
i=1

qi(X)
(
h(X + ξi)− h(X)

)]
. (1)

For a proof of this formula see Lemma 2.1 in [8].

B. Total variation distance

The total variation distance between two probability dis-
tributions ν(x) and ρ(x) in P(Zn≥0), the set of probability
distributions over Zn≥0, is defined as

dTV (ν, ρ) = sup
S⊆Zn≥0

|ν(S)− ρ(S)|

where ν(S) =
∑
x∈S ν(x) and ρ(S) =

∑
x∈S ρ(x).

C. Robust model invalidation

Given a CRN with unknown reaction rate constants θ ∈
Θ, let π(x;θ) denote the stationary distribution. Given an
observed distribution, the model is invalidated if no value of
θ ∈ Θ reproduces the observed distribution, i.e. if there does
not exist a θ ∈ Θ such that π(x;θ) matches the observed
distribution. To account for the possibility of measurement
error, in this work we consider a robust variant of model
invalidation, which we formally define as follows:

Definition 2.1: Given a CRN model with parameters θ ∈
Θ and stationary distribution π(x;θ), an observed distribu-
tion π̂(x), and a threshold η ≥ 0, π̂(x) robustly invalidates
the model π(x;θ) with threshold η if there does not exist
θ ∈ Θ such that dTV (π(·;θ), π̂) ≤ η.
Our notion of robust model invalidation can capture multiple
effects. For example, if ζ fraction of samples are corrupted,
e.g. drawn from an arbitrary distribution ν, the observed
distribution with infinitely many samples is

π̂ = (1− ζ)π(·;θ) + ζν. (2)

Since it follows that dTV (π̂, π(·;θ)) ≤ ζ, one can pick
η = ζ and be guaranteed that if π̂ robustly invalidates
the model π(·;θ) with threshold η, then π̂ could not have
been generated by (2) for any θ ∈ Θ and any distribution
ν. Alternatively, robust model invalidation can capture π̂
being an arbitrary “perturbation” in total variation distance
to π(·;θ), representing the fact that CRN models are rarely
perfect descriptions of biological systems. In Remark 4.2, we
will see another motivation for our definition of robust model
invalidation through its connection to hypothesis testing.
The problem we consider in this work is constructing an
algorithm for robust model invalidation, that is, given a CRN
model π(·;θ) with θ ∈ Θ, observed distribution π̂, and a
threshold η, determine if π̂ robustly invalidates π(·, θ). As
shown in Figure 1, we seek an algorithm having the property
that the model is never incorrectly robustly invalidated. We
do however allow the algorithm to be conservative, i.e. it
may fail to declare the model robustly invalidated even when
π̂ robustly invalidates the model according to Definition
2.1. This mirrors the philosophy behind model invalidation,
where declaring the model robustly invalidated represents a
firm belief that the model is incorrect, and the alternative
is that we do not know if the model is correct or not.
When using a algorithm such as the one we develop in
this work, this lack of knowledge may be because π̂ is
close to π(·; Θ), or it may be because π̂ is not close to
π(·; Θ), but our algorithm could not prove this fact. As we
will see, allowing for this type of conservativism allows us
to construct a computationally efficient algorithm for robust
model invalidation.

III. EXPONENTIALLY WEIGHTED MOMENTS
In this section, we introduce the generalized moments that

are necessary to solve the model invalidation problem in
Section IV. In Section III-A, we then show to how construct
constraints that hold for the generalized moments of any
distribution that is close to π̂, and in Section III-B we use the



Fig. 1: Model invalidation setup. P is the space of all prob-
ability distributions. The set π(x; Θ) = {π(x;θ)|θ ∈ Θ}
is all distributions that correspond to some θ ∈ Θ. The
dash line shows the set of all distributions ν such that
dTV (π(·;θ), ν) ≤ η for some θ ∈ Θ. Distribution π̂1 is in
π(x; Θ) and should not invalidate the model, π̂2 is not within
η in total variation of π(x; Θ) and so would ideally invalidate
the model. Distribution π̂3 is within η of π(x; Θ) in total
variation, and so cannot invalidate the model. Distribution
π̂4 is farther than η in total variation from π(x; Θ) and
so robustly invalidates the model. We seek an algorithm
which can certify invalidity of the model, but we allow the
algorithm to be conservative. This corresponds to finding the
grey set I, and an associated algorithm with can determine if
the observed distribution is in I or not. In the shown cartoon,
only π̂4 would result in the algorithm robustly invalidating
the model.

CME to construct bilinear constraints relating the generalized
moments of the stationary distribution and the reaction rate
constants.

Let ν be a probability mass function over Zn≥0 and let
γ > 0 such that 1

γ ∈ Z. For i = (i1, i2, . . . , in) ∈ Zn≥0 we
define

gi(x) = cie
−γ〈1,x〉

n∏
j=1

x
ij
j ,

where ci =

(
e−

∑n
j=1 ij

∏n
j=1

(
ij
γ

)ij)−1
. Observe that 0 ≤

gi(x) ≤ 1 for all x ≥ 0, and that gi(x) takes value 1 at
exactly x = 1

γ i. We then define the exponentially weighted
moments of ν as

λi(ν) = Eν [gi(X)] .

Let k ∈ N. For convenience let φ : Z>0 → Zn≥0 be a one-to-
one function such that φ({1, . . . ,K}) = {0, 1, . . . , k}n. We
define

gk(x) =
[
gφ(1)(x) gφ(2)(x) . . . gφ(K)(x)

]T
,

where K = (k + 1)n, and

λk(ν) = Eν
[
gk(X)

]
.

Thus, for a distribution ν, λk(ν) is the vector of all gen-
eralized moments such that the degree in each species is
≤ k, i.e. λi where i ≤ k. It will sometimes be convenient
to express λk(ν) using matrix notation. Let p ∈ `1 be a

probability vector representing ν ∈ P(Zn≥0). We denote by
G the matrix with (k + 1)n rows and infinite columns such
that λk(ν) = Gp. Observe that each column of G will be
given by gk(x∗) for some x∗ ∈ Zn≥0.

A. Exponentially weighted moments of distributions close to
π̂

We now consider the set of values of λk(ν) for some
distribution ν that is within η of π̂ in total variation. These
values are given by the set Λk(π̂, η), defined formally as

Λk(π̂, η) =
{
λk(ν)

∣∣ν ∈ P(Zn≥0) s.t. dTV (ν, π̂) ≤ η
}
.

In this section we give one approach to producing an outer
approximation of Λk(π̂, η). Let us define cλ as the maxi-
mum 2-norm discrepancy between λk(π̂) and any vector of
generalized moments of a distribution that is within η of π̂
in total variation distance:

cλ(π̂, η) = sup
ν∈P(Zn≥0

):dTV (ν,π̂)≤η
‖λk(ν)− λk(π̂)‖2.

We have that
{
λ
∣∣‖λk(ν)− λk(π̂)‖2 ≤ cλ(π̂, η)

}
⊇

Λk(π̂, η). We now show how to compute upper bounds on
cλ, which can then be used to create an outer approximation
to Λk(π̂, η). We start by observing that

cλ(π̂, η) = sup
p∈`1:p≥0,

∑
i pi=1, ‖p−p̂‖1≤2η

‖G(p− p̂)‖2, (3)

where p̂ is the probability vector representation of π̂. Define
eλ as

eλ = sup
p̃∈`1:‖p̃‖1≤2η,

∑
i p̃i=0

‖Gp̃‖2. (4)

Since the feasible set in (4) is a superset of the feasible set in
(3), eλ provides an upper bound on cλ. Since (4) is a convex
maximization problem, to compute eλ we must check the
value of ‖Gp̃‖2 at every extreme point of the feasible set.
This is formalized, with the extreme points given explicitly,
in Lemma 3.1.

Lemma 3.1: Let H = {p ∈ `1|
∑
i pi = 0, ‖p‖1 ≤ 2η},

K ∈ Rm×∞ have finite absolute row sums, and b ∈ Rm.
For i, j ≥ 1, let vij = ηδi−ηδj where δi is the ith canonical
unit vector in `1. We have that

sup
p∈H
‖Kp+ b‖2 = sup

1≤i,j
‖Kvij + b‖2.

Proof: See appendix A.
Lemma 3.1 implies that

eλ = sup
i,j≥1
‖Gvij‖2 = sup

x,x′∈Zn≥0

η‖gk(x)− gk(x′)‖2,

where vij = ηδi − ηδj . Partition Z2n
≥0 into three sets,

S1
N ′ =

{
(x,x′) ∈ Z2n

≥0
∣∣x,x′ ≤ N ′} ,

S2
N ′ =

{
(x,x′) ∈ Z2n

≥0
∣∣x,x′ � N ′

}
,

S3
N ′ =

{
(x,x′) ∈ Z2n

≥0
∣∣x � N ′ or x′ � N ′, but not both

}
.



Here, x ≤ N ′ means that every elements of x is less than
or equal to N ′, and x � N ′ means that at least one element
of x is greater than N ′. Additionally, let

BN ′ =
{
x ∈ Zn≥0

∣∣x ≤ N ′ and ∃i s.t. xi = N ′
}
,

which the set of points in Zn≥0 on the “boundary” of the
subset where x ≤ N ′. Let

e1λ(N ′) = η · max
(x,x′)∈S1

N′

‖gk(x)− gk(x′)‖2,

e2λ(N ′) = η · sup
(x,x′)∈S2

N′

‖gk(x)− gk(x′)‖2,

e3λ(N ′) = η · sup
(x,x′)∈S3

N′

‖gk(x)− gk(x′)‖2.

Since S1
N ′ ∪ S2

N ′ ∪ S3
N ′ = Z2n

≥0, we have that

eλ(N ′) = max
{
e1λ(N ′), e2λ(N ′), e3λ(N ′)

}
.

One can compute e1λ(N ′) since it is a maximum over a finite
number of points. However, it is not obvious how to compute
e2λ(N ′) and e3λ(N ′). Let

ẽ2λ(N ′) = 2η max
x∈BN′

‖gk(x)‖2,

and

ẽ3λ(N ′) = η · max
x∈Zn≥0

,x≤N ′
‖gk(x)‖2 + η · max

x∈BN′
‖gk(x)‖2.

Define

ẽλ(N ′) = max
{
e1λ(N ′), ẽ2λ(N ′), ẽ3λ(N ′)

}
.

For sufficiently large N ′, eλ ≤ ẽλ(N ′), with the bound
becoming tight as N ′ → ∞. This is formalized in the
following lemma.

Lemma 3.2: For any integer N ′ > k/γ we have that

eλ ≤ ẽλ(N ′).

Furthermore, limN ′→∞ ẽλ(N ′) = eλ.
Proof: See Appendix B.

Based on Lemma 3.2 we can construct an outer approxima-
tion to Λk(π̂, η), as given in the following theorem.

Theorem 3.1: For any integer N ′ > k/γ we have that{
λ
∣∣‖λ− λk(π̂)‖2 ≤ ẽλ(N ′)

}
⊇ Λk(π̂, η).

Proof: Observe that cλ ≤ eλ. The result then follows
from Lemma 3.2.
We now give another type of constraint that λk(ν) satisfies
for all ν such that dTV (ν, π̂) ≤ η. We exploit that fact that for
certain values of γ and k, the elements of λk are constrained
to be approximately in a lower dimensional subspace of
R(k+1)n . If we can find a T ∈ Rm×(k+1)n such that the
nullspace of T is the subspace of R(k+1)n that λk is close
to, ‖Tλk‖2 will be small. We first give a general method for
bounding

cT = sup
ν∈P(Zn≥0

):dTV (ν,π̂)≤η
‖Tλk(ν)‖2 (5)

for an arbitrary T . Then, we give a heuristic for selecting T .
Our development of the bound on cT proceeds similarly to
our bound on cλ. Let

eT = sup
p:

∑
i pi=0,‖p−p̂‖1≤2η

‖TGp‖2. (6)

From the fact that the feasible set is larger in (6) than in (5)
we have that cT ≤ eT . An equivalent expression for eT is

eT = sup
p̃:

∑
i p̃i=0,‖p̃‖1≤2η

‖Tλk(π̂) + TGp̃‖2.

By using Lemma 3.1 we can write eT as

eT = sup
i,j∈Z>0

‖Tλk(π̂) + Tvij‖2,

= sup
x,x′∈Zn≥0

‖Tλk(π̂) + ηT
(
gk(x)− gk(x′)

)
‖2.

Similarly to our approach to bounding eλ we define

e1T (N ′) = max
(x,x′)∈S1

N′

‖Tλk(π̂) + ηT (gk(x)− gk(x′))‖2,

e2T (N ′) = sup
(x,x′)∈S2

N′

‖Tλk(π̂) + ηT (gk(x)− gk(x′))‖2,

e3T (N ′) = sup
(x,x′)∈S3

N′

‖Tλk(π̂) + ηT (gk(x)− gk(x′))‖2.

Since S1
N ′ ∪ S2

N ′ ∪ S3
N ′ = Z2n

≥0, we have that

eT (N ′) = max
{
e1T (N ′), e2T (N ′), e3T (N ′)

}
.

One can compute e1T (N ′), but we must bound e2T (N ′) and
e3T (N ′). Let

ẽ2T (N ′) = ‖Tλk(π̂)‖2 + 2η‖T‖2 max
x∈BN′

‖gk(x)‖2

and

ẽ3T (N ′) = max
x∈Zn≥0

,x≤N ′,κ∈{+1,−1}
‖Tλk(π̂)

+ κηTgk(x)‖2 + η‖T‖2 · max
x∈BN′

‖gk(x)‖2.

We define

ẽT (N ′) = max
{
e1T (N ′), ẽ2T (N ′), ẽ3T (N ′)

}
,

and have the following lemma, which establishes that
ẽT (N ′), with N ′ sufficiently large, can be used to bound
eT .

Lemma 3.3: For any integer N ′ > k/γ we have that

eT ≤ ẽT (N ′).

Furthermore, limN ′→∞ ẽT (N ′) = eT .
Proof: See Appendix B.

Based on Lemma 3.3 we can construct an outer approxi-
mation of Λk(π̂, η), which we formalize in the following
theorem.

Theorem 3.2: For any integer N ′ > k/γ we have that

{λ|‖Tλ‖2 ≤ ẽT (N ′)} ⊇ Λk(π̂, η).
Proof: Observe that cT ≤ eT . The result then follows

from Lemma 3.3.



While there are many methods to select a matrix T , and
Theorem 3.2 will hold for any matrix T , we wish to choose
a T so that the intersection of the sets given in Theorems 3.1
and 3.2 is a good outer approximation of Λk(π̂, η). Here we
simply give a heuristic for selecting T , which is inspired by
moment closure techniques for the standard moments [18].
Let λk be partitioned into λk =

[
(λ0:k−2)T (λk−1:k)T

]T
,

where λ0:k−2 is composed of the elements corresponding
to gi(x) with i ≤ k − 2 and λk−1:k is composed of all the
other elements. Note that the existence of such a partitioning
requires a particular choice of φ. For some choices of γ and
k, it will be true that there exists T̃ ∈ Rdimλk−1:k×(k+1)n

such that

∀ν ∈ P(Zn≥0) s.t. dTV (ν, π̂) ≤ η, λk−1:k ≈ T̃λ0:k−2.

This expresses the idea that at least for distributions close to
π̂, one can approximate λk−1:k(ν) by a linear combination
of the elements of λ0:k−2. A heuristic for picking such a T̃
is based on least squares,

T̃ = G0:k−1
N ′′

(
Gk−1:kN ′′

)†
,

where GN ′′ =

[
G0:k−1
N ′′

Gk−2:kN ′′

]
is the matrix formed from the

columns of G corresponding to x ≤ N ′′, and N ′′ is picked
such that most of the probability mass of π̂ is contained
in the region x ≤ N ′′. We than pick T =

[
T̃ I

]
. While

we have not justified that the approximation will be good,
the correctness of the robust model invalidation method we
introduce in Section IV depends only upon Theorem 3.2,
which holds for any matrix T , and thus using a heuristic for
selecting T does not affect the rigor in our results.

Remark 3.1: An alternative approach to selecting T is to
take the singular value decomposition of GN ′′ . If

GN ′′ =
[
U1 U2

]
ΣV T ,

where the columns of U2 correspond to the small singular
values, we expect that ‖UT2 λk(ν)‖2 will be small for all ν,
and thus T = UT2 is a reasonable choice of T . We defer
further study of the selection of T for future work.

B. Exponentially weighted moments of the stationary distri-
bution

Here we show that when π(x;θ) is the stationary dis-
tribution of the CME, λk(π(·;θ)) must satisfy particular
constraints. Specifically, letting ω(x; t,θ) be the solution to
the CME, we define Ak(θ) =

∑r
i=1 θiA

k
i as the matrix

valued function such that
d

dt
λk−2(ω(·; t,θ)) = Ak(θ)λk(ω(·; t,θ)), (7)

when such an Ak(θ) exists. For the stationary distribution
π(x;θ), setting 0 = d

dtλ
k−2(π(·;θ)) we have the constraints

0 = Ak(θ)λk(π(·;θ)). (8)

We stress that the existence of such constraints is a property
of the particular generalized moments that we have chosen,

and in general, for a set of functions gi(x), no such con-
straints exist. However, a similar property does hold for the
standard moments, i.e. averages with respect to monomials
in X [9], [6].

Theorem 3.3: Let ω(x; t,θ) be the solution to the CME,
and let π(x;θ) be the stationary distribution of the CME,
both with with reaction rate constants θ. Let λk(π(·;θ)) be
the vector of generalized moments corresponding to π(x;θ).
Then, there exists Ak(θ) 6= 0 linear in θ satisfying (7) and
(8) for all θ such that X(t) is ergodic.

Proof: Let ω(x; t,θ) be the distribution of X(t). We
show that Ak(θ) can be obtained by writing the derivatives
of λk−2(t) as a linear combination of the elements of λk(t).
For any multi index i ≤ k − 2, we have from (1) that

dλi(ω(·; t,θ))

dt
= E

 r∑
j=1

qj(X)
(
gi(X + ξj)− gi(X)

) ,

= E

 r∑
j=1

qj(X)

(
cie
−γ〈1,X+ξj〉

n∏
s=1

(Xs + ξjs)
is

−cie−γ〈1,X〉
n∏
s=1

(Xs)
is

)]
,

= E

cie−γ〈1,X〉 r∑
j=1

qj(X)

(
e−γ〈1,ξ

j〉
n∏
s=1

(Xs + ξjs)
is

−
n∏
s=1

(Xs)
is

)]
,

where all expectations are with respect to X ∼ ω(·; t,θ).
One can see that under our assumption that qj(X) is a
polynomial of order 2 or less, d

dtλi(t) can be written as a
linear combination of the elements of λk. Additionally, since
qj(X) is linear in θj , one can see that d

dtλi(t) is linear in θ.
Thus, but setting 0 = d

dtλi(t) for 0 ≤ i ≤ k−2, justified by
the boundedness of gk(x) and the ergodicity of X(t), we
have the desired result for the generalized moments of the
stationary distribution.

IV. ROBUST MODEL INVALIDATION
In this section we present the main result of this work,

an algorithm that can certify that an observed distribution
is farther than η from the model class p(x;θ) in total
variation. We consider optimization problem (10), which is
a nonconvex quadratically constrained program due to the
0 =

(∑r
i=1 θiA

k
i

)
λ constraint. The decision variables are

θ ∈ Rr and λ ∈ R(k+1)n , and we assume for simplicity that
Θ ⊆ Rr>0 is a polyhedral set.

‖λ− λk(π̂)‖2 ≤ ẽλ(N ′) (10a)
‖Tλ‖2 ≤ ẽT (N ′) (10b)

0 =
(∑r

i=1
θiA

k
i

)
λ (10c)

θ ∈ Θ (10d)



As formalized in Theorem 4.1, if we can show infeasibility
of (10), then we have a method to robustly invalidate a
model. We note that despite the fact that (10) is nonconvex, it
has only r+(k+1)n variables, and thus the size of (10) can
be controlled by our choice of k. We will see in an example
that (k + 1)n can be made far smaller than the number of
variables needed to naively represent π(x;θ) to within ε in
total variation distance. Nonconvex quadratically constrained
feasibility problems can be solved by commercial solvers
such as Gurobi, using a spatial branch and bound method [1].

Theorem 4.1: Consider a CRN with stationary distribution
π(·; θ) and parameters θ ∈ Θ and let η ≥ 0 be a threshold.
Let N ′ > k/γ. For an observed distribution π̂, if (10) is
infeasible, then the model π(x;θ) is robustly invalidated
with threshold η by π̂.

Proof: We prove the contrapositive. Suppose the model
π(x;θ) is not robustly invalidated with threshold η by π̂.
Then, exists θ∗ ∈ Θ such that dTV (π(·;θ∗), π̂) ≤ η. We
show that (10) is feasible. We have that ‖λk(π(·;θ∗)) −
λk(π̂)‖2 ≤ ẽλ(N ′) and ‖Tλk(π(·;θ∗))‖2 ≤ ẽT (N ′) from
Theorems 3.1 and 3.2. Additionally, since π(·;θ∗) is the
stationary distribution of the CRN with parameters θ∗, we
have that 0 =

(∑r
i=1 θiA

k
i

)
λk(π(·;θ∗)) from Theorem 3.3.

Hence, λk(π(·;θ∗)) is a solution to (10), which completes
the proof.

Remark 4.1: A formulation of robust model invalidation
similar to (10), but using the standard moments instead of
the exponentially weighted moments is not possible. In fact,
let hi(x) =

∏n
i=1 x

ij
j , and define

µk(ν) = Eν
[[
hφ(1)(X) hφ(2)(X) . . . hφ(K)(X)

]T ]
,

the vector of standard moments of ν with i ≤ k. For any
η > 0,

sup
dTV (ν,π̂)≤η

‖µk(ν)− µk(π̂)‖2 =∞,

which prevents us from constructing constraints analogous
to (10a) using the standard moments.

Remark 4.2: Our definition of robust model invalidation
can also capture finite sample effects through a connection to
hypothesis testing. Suppose we have Ns i.i.d. samples, and
are trying to determine if they were drawn from ν ∈ π(·; Θ)
or ν /∈ π(·; Θ). If we consider the null hypothesis H0 to be
the former and the alternative hypothesis H1 to be the latter,
we can use (10) as a decision rule by choosing H1 if (10)
is infeasible and H0 otherwise. As we show in the extended
version [10], we can pick the threshold η such that the worst
case type I error rate is less than any desired level.

V. EXAMPLE

Here we present an example of our model invalidation
framework applied to two different CRNs with two species,
where our goal is to determine which of the two CRNs
are consistent with observed data, and thus determine if the
two molecules in the system are suitable for constructing
a particular biomolecular circuit. One way to implement
an integral controller using chemical reactions is with the

(a) (b)

Fig. 2: Measured distribution π̂ for the example. The dis-
tribution π̂, with the probability mass function shown as a
heatmap in (a) and an isometric plot in (b). The distribution
is π̂ = 0.995π1(·;θ) + 0.0051{x1=9,x2=49}, a mixture of the
stationary distribution of R1 with θ = [200, 1, 200, 1, 1], and
the distribution 1{x1=9,x2=49}(x).

antithetic motif, where the two controller species annihilate
one another [5], [19]. In order to obtain integral control using
the antithetic motif, it is critical that the two species truly
annihilate one another, instead of interacting via a different
mechanism. We consider having measured data from the
stationary distribution of a system with two species, X1 and
X2, where it is possible that X1 and X2 interact through
mutual degradation or that they interact by X2 enzymatically
degrading X1. Let R1 be

∅

θ
2

θ
1

X1

θ 3 θ 4

X2

θ5

X1 + X2

with stationary distribution π1(·;θ) and associated set for
the parameters of Θ1 =

{
θ ∈ R5

∣∣1 ≤ θ ≤ 500
}

. The CRN
R1 models the situation where X1 and X2 undergo mutual
degradation. Let R2 be

∅

θ
2

θ
1

X1

θ 3 θ 4

X2
θ
5

X1 + X2

with stationary distribution π2(·;θ) and associated set for
the parameters of Θ2 =

{
θ ∈ R5

∣∣1 ≤ θ ≤ 500
}

. The CRN
R2 models the situation where X2 enzymatically degrades
X1. Consider the observed distribution π̂ shown in Figure 2,
generated by R1 mixed with outliers at a point. We select a
threshold η = 0.005, and choose k = 9 and γ = k/30. We
choose T according to the moment closure method computed
with N ′′ = 50. To solve the optimization problems for this
example we use the MATLAB toolbox YALMIP [15] to set
up the optimization problems, and Gurobi [1] to solve them.
Setting N ′ = 60 and constructing feasibility problem (10) for
R1, we find that (10) is feasible, and thus π̂ does not robustly
invalidate the model π1(·,θ). On the other hand, forR2, (10)
is infeasible, and thus by Theorem 4.1 π̂ robustly invalidates
model π2(·;θ) with threshold η = 0.005. We conclude that



R2 is not the correct model for the interaction of X1 and
X2, and that R1 is a possible model for the interaction.
If we know that the true model is either R1 or η up to
a perturbation of size η in total variation distance, then we
can conclude that X1 and X2 undergo mutual degradation
and thus are suitable for constructing an integral controller.

VI. CONCLUSION

In this work, we studied the problem of model invalidation
for CRNs from the stationary distribution. Our approach
makes use of exponentially weighted moments, which we
introduce, to certify that the observed distribution cannot be
reproduced to within the specified tolerance in total variation
by any value of the parameters. In this way we obtain
a relatively small, though nonconvex, quadratic feasibility
problem that can be solved by commercial software [1]. As
we have seen in the example, our method is practical for
determining which CRN models are consistent with observed
data. Future work includes reducing the conservatism of
our proposed method by considering alternative methods to
construct an outer approximation of Λk(π̂, η), and extensions
to the case where only certain species in the system are
measured.
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APPENDIX

A. Proof of Lemma 3.1
Proof: We begin showing that the extreme points of

H are {vij |i, j ∈ N}. One can show this by considering
the intersection of an arbitrary face of {p|‖p‖1 ≤ 2η} and
{p|
∑
i pi = 0}. Let Fα for αi ∈ {−2η,+2η} be the face

of {p|‖p‖1 ≤ 2η} that is the convex hull of {αiδi|i ∈ N}.
Since Fα = {

∑
i τiαiδi|

∑
i τi = 1, τi ≥ 0}, we have that

Fα ∩ {p|
∑
i pi = 0} is represented in the τ coordinates as

τ ≥ 0 such that[
1 1 1 . . .
α1 α2 α3 . . .

]
τ =

[
1
0

]
.

One can see that the extreme points of this set are {τ |τi =
1/2, τj = 1/2, for some i, j ∈ N, τl = 0 for l 6= i, j}.
Thus, the extreme points of Fα ∩ {p|

∑
i pi = 0} are of

the the form p = ηδi − ηδj . Since for all i, j ∈ N there
is an α such that p = ηδi − ηδj is an extreme point of
Fα ∩ {p|

∑
i pi = 0}, the set of extreme points of H is

{ηδi − ηδj |i, j ∈ N}. Let

e = sup
αij≥0,

∑∞
i,j=1 αij=1

‖K
∞∑

i,j=1

αijvij + b‖2,

= sup
αij≥0,

∑∞
i,j=1 αij=1

‖
∞∑

i,j=1

αij (Kvij + b)‖2,

≤ sup
αij≥0,

∑∞
i,j=1 αij=1

∞∑
i,j=1

αij‖Kvij + b‖2,

≤ sup
1≤i,j
‖Kvij + b‖2.



On the other hand, since {vij |i, j ∈ N} ⊂ {p ∈ `1|‖p‖1 ≤
2η,
∑
i pi = 0}, we have that e ≥ sup1≤i,j‖Kvij + b‖2.

Thus, e = sup1≤i,j‖Kvij + b‖2 and the proof is complete.

B. Proofs of Lemmas 3.2 and 3.3
To begin we state and prove a lemma that shows we can

bound supx∈Zn≥0
:x�N ′‖gk(x)‖2 by maxx∈B(N ′)‖gk(x)‖2 if

N ′ is sufficiently large.
Lemma B.1: Let N ′ > k/γ. We have that

sup
x∈Zn≥0

:x�N ′
‖gk(x)‖2 ≤ max

x∈B(N ′)
‖gk(x)‖2.

Proof: Let x∗ � N ′ and define z ∈ Zn≥0 as zi =
min{x∗i , N ′}. Since x � N ′, there exists i such that x∗i >
N ′, and hence zi = N ′. Thus, z ∈ B(N ′). Consider gi(x),
an arbitrary element of gk(x). We have that

∂gi(z + α(x∗ − z))

∂α
=

n∑
j=1

∂gi
∂xj

(z+α(x∗−z))(x∗j−zj).

For each j = 1, 2, . . . , n we have that either x∗j − zj = 0, or
zj = N ′ and x∗j > N ′. Let us consider a j where the later
is true.
∂

∂xj
gi(x) = e−γ〈1,x〉

n∏
l 6=j

(xl)
il
(
−γ (xj)

ij + ij (xj)
ij−1

)
,

which is negative as long as xj > ij/γ. For 0 ≤ α ≤ 1 we
have zj + α(x∗j − zj) ≥ zj ≥ N ′. By assumption, N ′ >
k/γ, so since k ≥ ij , we have that for all 0 ≤ α ≤ 1,
zj + α(x∗j − zj) > ij/γ and hence

∂gi
∂xj

(z + α(x∗ − z)) < 0.

Therefore, for all 0 ≤ α ≤ 1 and i ≤ k,
∂gi(z + α(x∗ − z))

∂α
< 0,

and hence gk(x∗) < gk(z). We have show that for all
x′ � N ′, there exists a z ∈ B(N ′) such that ‖gk(x′)‖2 ≤
‖gk(z)‖2, and so

max
x′∈Zn≥0

,x′�N ′
‖gk(x′)‖2 ≤ max

x∈BN′
‖gk(x)‖2,

which completes the proof.
We now prove Lemmas 3.2 and 3.3.

Proof: [Lemma 3.2] To prove the first statement it
suffices to show that e2λ ≤ ẽ2λ and e3λ ≤ ẽ3λ. We have that

e2λ ≤ η · sup
(x,x′)∈S2

N′

(
‖gk(x)‖2 + ‖gk(x′)‖2

)
,

= 2η · max
x∈Zn≥0

,x�N ′
‖gk(x)‖2.

and thus by Lemma B.1, e2λ ≤ ẽ2λ. We now show that e3λ ≤
ẽ3λ.

e3λ ≤ η · sup
(x,x′)∈S3

N′

(
‖gk(x)‖2 + ‖gk(x′)‖2

)
,

≤ η

(
max

x∈Zn≥0
,x≤N ′

‖gk(x)‖2 + max
x′∈Zn≥0

,x′�N ′
‖gk(x′)‖2

)
.

It then follows from Lemma B.1 that e3λ ≤ ẽ3λ, es-
tablishing that for all N ′ > k/γ, eλ ≤ ẽλ(N ′).
We now show that limN ′→∞ ẽλ(N ′) = eλ. First, ob-
serve that limN ′→∞ ẽ1λ(N ′) = eλ. We will establish
that asymptotically ẽ2λ and ẽ3λ are no larger than eλ.
For any i we have that limx→∞ gi(x) = 0, and
hence limN ′→∞maxx∈BN′‖g

k(x)‖2 = 0. Therefore,
limN ′→∞ ẽ2λ = 0 ≤ eλ. Additionally, observe that
limN ′→∞ ẽ3λ = η · supx∈Zn≥0

‖gk(x)‖2 ≤ eλ. Finally,
limN ′→∞ ẽλ(N ′) = eλ.

Proof: [Lemma 3.3] The proof proceeds similarly to the
proof of Lemma 3.2. To prove the first statement we show
that e2T ≤ ẽ2T (N ′) and e3T ≤ ẽ3T (N ′).

e2T ≤ sup
(x,x′)∈S2

N′

‖Tλk(π̂)‖2 + η(‖Tgk(x)‖2 + ‖Tgk(x′)‖2),

≤ ‖Tλk(π̂)‖2 + 2η sup
x∈Zn≥0

:x�N ′
‖Tgk(x)‖2

For N ′ > k/γ it then follows from Lemma B.1 that e2T ≤ ẽ2T .
Turning our attention to e3T , let

a = sup
x,x′ ∈ Zn≥0 :
x ≤ N ′, x′ � N ′

‖Tλk(π̂) +ηTgk(x)−ηTgk(x′)‖2

and

b = sup
x,x′ ∈ Zn≥0 :
x ≤ N ′, x′ � N ′

‖Tλk(π̂)− ηTgk(x) + ηTgk(x′)‖2

It is true that e3T = max{a, b}. We have that

a ≤ max
x∈Zn≥0

:x≤N ′
‖Tλk(π̂) + ηTgk(x)‖2

+ η · sup
x′∈Zn≥0

:x′�N ′
‖Tgk(x′)‖2,

and hence by Lemma B.1 we have that

a ≤ max
x∈Zn≥0

:x≤N ′
‖Tλk(π̂) + ηTgk(x)‖2

+ η‖T‖2 · max
x′∈BN′

‖gk(x′)‖2. (11)

By an analogous argument, one can show that

b ≤ max
x∈Zn≥0

:x≤N ′
‖Tλk(π̂)− ηTgk(x)‖2

+ η‖T‖2 · max
x′∈BN′

‖gk(x′)‖2. (12)

Defining the right hand side of (11) as ã and the right
hand side of (12) as b̃, we have that ẽ3T = max{ã, b̃},
and since a ≤ ã and b ≤ b̃, we have that e3T ≤ ẽ3T
for all N ′ > k/γ. To prove the second statement, we
observe that limN ′→∞maxx∈BN′‖Tg

k(x)‖2 = 0, and
hence limN ′→∞ ẽ2T ≤ eT . Additionally, limN ′→∞ ẽ3T ≤ eT .
Therefore, limN ′→∞ ẽT = eT .


